Worst-Case Analysis of Digital Control Loops with Uncertain Input/Output Timing (Benchmark Proposal)

Maximilian Gaukler and Peter Ulbrich

Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

ARCH'19, Montréal, Canada April 15, 2019

input/output assumed periodic

input/output assumed periodic

input/output assumed periodic

input/output assumed periodic

Modern Real-Time Systems:

- Network / bus systems
- Smart sensors
- High complexity

input/output assumed periodic

Modern Real-Time Systems:

- Network / bus systems
- Smart sensors
- High complexity

→ Strict timing is difficult!

Motivation

Controller Design:

input/output assumed periodic

Modern Real-Time Systems:

- Network / bus systems
- Smart sensors
- High complexity
- → Strict timing is difficult!

Desired Alternative:

Allow some timing deviation

 $\rightsquigarrow {\sf Formal \ safety \ guarantees?}$

clock (τ , startOfCycle) $u_{\text{next.1}}$ $y_{d,1}$ Sample-and-Hold u_1 Sample-and-Hold with timing uncertainty with timing uncertainty Controller Plant ÷ and Clock Sample-and-Hold Sample-and-Hold $u_{\operatorname{next},m}$ with timing uncertainty with timing uncertainty u_m y_p $y_{\mathrm{d},p}$ Controller (x_d) startOfCycle always $\frac{T}{2}$ $\tau = T/2$ $\dot{\tau} = 1, \quad \dot{\dot{x}}_{d} = 0$ $\checkmark \tau' = -T/2,$ $\mathsf{Clock}(\tau)$ 0 $-T/2 < \tau < T/2$ $-\frac{T}{2}$ $\overrightarrow{0}$ $x'_{\rm d} = f_{\rm d}(x_{\rm d}, y_{\rm d})$ \dot{T} 2TController output: $u_{next} = g_d(x_d)$

clock (τ , startOfCycle) $u_{\text{next},1}$ $y_{d,1}$ Sample-and-Hold u_1 Sample-and-Hold with timing uncertainty with timing uncertainty Controller Plant ÷ ÷ and Clock Sample-and-Hold Sample-and-Hold with timing uncertainty with timing uncertainty $u_{next,m}$ u_m $y_{\mathrm{d}\,,p}$ y_n $\dot{x}_{\mathrm{p}}(t) = f_{\mathrm{p}}(x_{\mathrm{p}}(t), u(t), \frac{d(t)}{d(t)})$ $y(t) = g_{\rm p}(x_{\rm p}(t), \boldsymbol{d(t)})$ $d(t) \in D$ Multiple inputs and outputs Bounded disturbance and measurement noise •

clock (τ , startOfCycle) $u_{\text{next},1}$ $y_{d,1}$ u_1 Sample-and-Hold Sample-and-Hold with timing uncertainty with timing uncertainty Controller Plant ¥: ¥: and Clock Sample-and-Hold Sample-and-Hold with timing uncertainty with timing uncertainty $u_{next,m}$ u_m $y_{\mathrm{d}\,,p}$ y_p $\underline{\Delta t} \ \leq \ \tau \ \leq \ \overline{\Delta t}$ wait out' = indone out = 0 $\dot{out} = 0$ startOfCycle $\tau \ \leq \ \overline{\Delta t}$ $T (T + \overline{\Delta t})$ $(T + \underline{\Delta t})$ 2T

- 1 System model: network of hybrid automata
 - Machine-readable, unambiguous

- ① System model: network of hybrid automata
 - Machine-readable, *unambiguous*
- Verification goal: tight worst-case bounds (infinite-time reachable set)
 - Metric: bloating factor

- 1 System model: network of hybrid automata
 - Machine-readable, *unambiguous*

Verification goal: tight worst-case bounds (infinite-time reachable set)

• Metric: bloating factor

- 1 System model: network of hybrid automata
 - Machine-readable, *unambiguous*
- Verification goal: tight worst-case bounds (infinite-time reachable set)
 - Metric: bloating factor
- 3 Example systems
 - Linear, no disturbance
 - From 1D examples to a simplified 3-axis quadrocopter controller

- 1 System model: network of hybrid automata
 - Machine-readable, *unambiguous*
- Verification goal: tight worst-case bounds (infinite-time reachable set)
 - Metric: bloating factor
- 8 Example systems
 - Linear, no disturbance
 - From 1D examples to a simplified 3-axis quadrocopter controller
- Success only for trivial examples

- Problem: Timing uncertainties in digital control
 - Hard to avoid
 - Verification is challenging, but of high practical relevance

- Problem: Timing uncertainties in digital control
 - Hard to avoid
 - Verification is challenging, but of high practical relevance
- Is a pure hybrid-automata approach suitable here?

FRIEDRICH-ALEXANDE UNIVERSITÄT ERLANGEN-NÜRINBER FACULTY OF ENGINEER

- Problem: Timing uncertainties in digital control
 - Hard to avoid
 - Verification is challenging, but of high practical relevance
- Is a pure hybrid-automata approach suitable here?
- $\bullet \; \rightsquigarrow \;$ Future work: "non-hybrid" alternatives
 - Continuous-time abstraction: continuization
 - Discrete-time: LMI-based robust stability

- Problem: Timing uncertainties in digital control
 - Hard to avoid
 - Verification is challenging, but of high practical relevance
- Is a pure hybrid-automata approach suitable here?
- $\bullet \; \rightsquigarrow \;$ Future work: "non-hybrid" alternatives
 - Continuous-time abstraction: continuization
 - Discrete-time: LMI-based robust stability

Can your tool solve the benchmark?

 $\texttt{http://qronos.de} \rightarrow \mathsf{Files} \text{ and } \mathsf{code} \ \mathsf{(GPLv3)}$

Appendix

1D example								
	$n_{\rm p}$	$n_{\rm d}$	m	p	timing	SpaceEx	$t_{\rm SE}$	$K_{\rm SE}$
A2	1	1	1	1	varying (negligible)	\checkmark	1 s	1.001
A1	1	1	1	1	varying (small)	\checkmark	1 s	1.010
A3	1	1	1	1	varying (medium)	\checkmark	2 s	1.059
A4	1	1	1	1	varying (large)	imes error (GLPK)		
A5	2	2	2	2	varying (like A3)	imes crash (GLPK)		—
3D, trivial (stable, negligible controller)								
B1	3	2	2	1	varying	\checkmark	16 s	1.097
1-axis quadrotor angular rate control								
C1	1	2	1	1	constant	× timeout		
C2	1	2	1	1	varying	imes crash	—	—
3-axis quadrotor angular rate control								
D1	3	6	4	3	constant	imes diverging		
D2	3	6	4	3	varying	imes crash	—	—

- Structural problem: Failures even with $\Delta t = 0$
- → Tools optimized for mostly-continuous systems?
 ≠ here: many discrete transitions, "unstable" inbetween
 - Dimension problematic: $2^{(\#inputs+\#outputs)}$ discrete states