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Related Work and Topics

typical performance
(stochastic)

worst-case guarantee
(deterministic)

time-averaged (stationary)

JITTERBUG
(Lincoln and Cervin 2002)

time-varying

• simulation
slow, no formal insight

• efficient computation?
; aim of this work

AnalysisCo-Design
; necessary?

Sampled-Data Control with uncertain timing
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1 Problem Formulation

• continuous-time MIMO plant (linear, time-invariant)

ẋp(t) = Apxp(t) +Bpu(t) +Gpd(t), xp(0) = 0,

y(t) = Cpxp(t) + wp(t)

• d(t): stochastic disturbance (white noise, time-varying covariance H(t))
• wp(t): measurement noise

• discrete-time controller (linear + reference trajectory), sampling time T

xd[k + 1] = Ad[k]xd[k] +Bd[k]y[k] + fd[k],

u[k] = Cd[k]xd[k] + gd[k], xd[0] = 0

• sampling and actuation delays |∆t...| < T/2

• time-varying, per sensor/actuator component
• random, independent of disturbance and measurement noise
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1 Problem Formulation

• quality via quadratic cost function: deviation from reference xr, ur

J(t) =(xp(t)− xr(t))
T Q̃(xp(t)− xr(t))

+ (u(t)− ur(t))
T R̃(u(t)− ur(t))

with xr(t), ur(t) known a priori.

• desired result: expected cost E{J(t)} (time-varying)
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2 Reformulation as Linear Impulsive System

plant state

xp(t)

t

controller state, sampling (y),
zero-order-hold (u)

xd(t)

t

combined state vector x(t)
(illustration)

x(t)

t
x(t−i )

x(t−i+1)
x(t+i )

x(t+i+1)
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2 Reformulation as Linear Impulsive System

Noise N

Timing T

ẋ(t) = Ax(t) +Gd(t), t 6= ti,

x(ti
+) = Aix(t−i ) +N

1/2
i vi

x(t)

• continuous dynamics
• interrupted by discrete jumps (sample, update controller, actuate)

• input: noise N
• d(t): disturbance
• vi: measurement randomness (covariance I)

• formalized IO timing T : ∆t... 7→ (ti, Ai, Ni)i∈N︸ ︷︷ ︸
T
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3 Approach for Deterministic Timing

• assumption: I/O timing T known a priori.

• ; remaining randomness: noise N

• result: expected cost E{J(t)} w.r.t. N
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3 Approach for Deterministic Timing: Discretization

Consider “covariance”matrix P (t) := E
{
x(t)x(t)T

}
of combined state.

(No real covariance: E{x(t)} 6= 0)

temporal evolution:

1 discrete from x(t−i ) to x(t+i )

P (t+i ) =AiP (t−i )ATi +Ni

2 continuous from x(t+i ) to x(t−i+1)

P (t−i+1) =eA∆ P (t+i ) eA
T∆ +

∫ ∆

0

eAτGHGT (eAτ )T dτ

with ∆ = t−i+1 − t
+
i .

• iterate (1) + (2) ; whole time axis
• ≈ stochastic time discretization at actual I/O times
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3 Approach for Deterministic Timing: Cost Evaluation

• rewrite cost function as

J(t) = xT(t)Q(t)x(t)

• Q(t) time-varying, but deterministic (contains reference trajectory)

• compute cost from covariance matrix:

E{J(t)} = E
{
xT(t)Q(t)x(t)

}
= trace

(
Q(t) E

{
x(t)xT(t)

}︸ ︷︷ ︸
P (t)

)
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3 Approach for Deterministic Timing

Result:
• dynamics of covariance P (t)

• ; time-varying Quality of Control via cost E{J(t)}

Classical Simulation (for comparison):
• pseudo-randomness
• ensemble mean over many runs → inefficient
• only stochastic convergence (in probability)

Gaukler et al.: Quality Evaluation for Control Systems with Stochastic Timing 15



4 Simple Example
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4 Simple Example

Example:
• linearized inverse pendulum (SISO)
• discrete-time observer-based state feedback, T = 0.2

• pole placement, dangerously fast choice: |λcontrol,continuous| ≈ 5|λplant|
• deterministic delay of u and y

Result:
• model run-time below 1 second
• simulation run-time over 5 hours for 3% relative error

(both implementations may be further optimized)

Gaukler et al.: Quality Evaluation for Control Systems with Stochastic Timing 17



4 Simple Example
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5 Generalization to Stochastic Timing

• current result F : covariance evolution from t = a+ to t = b+

P (b+) = F(a, b](P (a+), T ) , P (0) = x0x
T
0

for deterministic timing T .

• Notation: E
random variables

{. . .}

• stochastic timing:

P (t+) = E
N ,T

{
x(t+)xT(t+)

}
= · · · = E

T

{
F(0, t]

(
x0x

T
0 , T

) }
• noise N “eliminated”
• weighted average over all timing sequences T
• complexity ∼ t · exp(t) �

• cost evaluation still from covariance
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5 Generalization to Stochastic Timing

Simplification for Stochastically Independent Time Segments:
• motivation: timing of control periods often (almost) independent
• timing with independent segments t ∈ (γk, γk+1]

• result:

P (γ+
k+1) = E

T(γk, γk+1]

{
F

(γk, γk+1]

(
P (γ+

k ), T(γk, γk+1]

)}

• expectation only w.r.t. subsequence T(γk, γk+1]

• complexity ∼ t · exp(γk+1 − γk)
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6 Summary
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3 Approach for Deterministic Timing
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6 Summary

Problem:
• real-time MIMO control loop
• effect of varying situations (timing) on Quality of Control?

Approach:
1 Linear Impulsive System (LIS)
2 covariance matrix dynamics ≈ stochastic discretization
3 generalization to stochastic timing

Theoretical Results:
• general LIS model for linear MIMO control
• time-varying, stochastic evaluation of Quality of Control

; typically faster than random simulation
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6 Summary

Practical Result:
• visualize effects of timing changes on typical performance

Future improvements:
• Markov chain for timing
• speed up computations: lookup table, (over-)approximation

; use for online timing adaptation

Related Challenges:
• nonlinear case
• worst-case analysis (with our LIS model?)
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Thank you!
Any questions?

source code (GPL3) on our project website:
http://qronos.de
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Appendix
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Importance of I/O Timing

Timing is no longer constant:
• increasing system complexity

• many cheap asynchronous sensors
• many applications

• strict timing is expensive (over-provisioning)
• deliberate trade-off: fixed timing vs. efficiency

• adaptive scheduling
• mode changes (mixed-criticality)

Timing is not quality:

• real-time systems designed for timing = “Quality of Service” (QoS)
• actual goal is Quality of Control (QoC)!
• ; relation of QoS and QoC?

Gaukler et al.: Quality Evaluation for Control Systems with Stochastic Timing 27



State Vector

Combined state of plant, controller and sampling:

x(t) :=
[
xTp(t) xTd(t) yTd(t) uT(t) 1

]T
, x(0) =

[
0 . . . 0 1

]T
• xp(t): plant

• xd(t): controller, e.g., observer state x̂[k]

• yd(t): sampled measurement

 piecewise constant
• u(t): control signal (zero-order-hold)

• 1: auxiliary state for deterministic parts (E{·} 6= 0)
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Continuous Dynamics

• continuous dynamics for t 6= ti:

d

dt


xp(t)
xd(t)
yd(t)
u(t)

1


︸ ︷︷ ︸

x

=


Ap 0 0 Bp 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


︸ ︷︷ ︸

A


xp(t)
xd(t)
yd(t)
u(t)

1

+


Gp

0
0
0
0


︸ ︷︷ ︸
G

d(t)

Gaukler et al.: Quality Evaluation for Control Systems with Stochastic Timing 29



Discrete Events

1 sample yj [k] at ti = kT + ∆ty,j [k]

yd,j(t
+
i ) = eTj y(t−i ) = eTj

(
Cpxp(t−i ) + wp(t−i )︸ ︷︷ ︸

measurement noise

)

2 update controller state xd[k + 1] at ti = (k + 1
2 )T

xd(t+i ) = xd[k + 1] = Ad[k]xd(t−i ) +Bd[k]yd(t−i ) + fd[k] · 1︸ ︷︷ ︸
for reference traj.

; Ai = . . . , Ni = 0

3 output uj [k + 1] at ti = (k + 1)T + ∆tu,j [k]

ud,j(t
+
i ) = uj [k + 1] = eTj (Cd[k]xd(t−i ) + gd[k] · 1︸ ︷︷ ︸

for reference traj.

)

; Ai = . . . , Ni = 0
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Discrete Events
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(
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measurement noise

)


xp(t+i )
xd(t+i )
yd(t+i )
u(t+i )

1


︸ ︷︷ ︸

x(t+i )

=


I 0 0 0 0
0 I 0 0 0

eje
T
j Cp 0 0 0 0
0 0 0 I 0
0 0 0 0 1


︸ ︷︷ ︸

Ai


xp(t−i )
xd(t−i )
yd(t−i )
u(t−i )

1


︸ ︷︷ ︸

x(t−i )

+N
1/2
i vi,

Ni =


0

0
eje

T
j Npeje

T
j

0
0

 .
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T
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T
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0
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Example: Details

• linearized inverse pendulum

Ap =

[
0 1
ω2

0 −2ξω0

]
, Bp =

[
0

ω0/9.81

]
, Gp =

[
0
1

]
, Cp =

[
1 0

]
,

H = 10−3, Np = 10−6, ω0 = π, ξ = 0.5

• hold upper equilibrium (xr = 0, ur = 0)

• discrete-time observer-based state feedback
• dangerously fast pole placement:

• plant: {1.94,−5.08}
• controller: {−10,−11}, observer: {−20,−22}
(continuous-time equivalents, map via λd = exp(λT ))

• cost weighting: Q = 550I, R = 0.8 ; x and u “equally expensive”
• stationary cost without delays E{J} = 1

• T = 0.2
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Stochastic Timing: Derivation

• notation: E
random variables

{. . .}

• prior result: expectation w.r.t. noise N

E
N

{
x(t+)xT(t+)

}
︸ ︷︷ ︸

P (t+)

= F
(0, t]

(
E
N

{
x(0)xT(0)

}
︸ ︷︷ ︸

x0x
T
0

, T
)

for T known

• N , T independent ; equals conditional expectation

E
{
xT(t+)x(t+)|T

}
= F

(0, t]

(
x0x

T
0 , T

)
(1)

• Desired result: unconditional expectation

E
N ,T

{
x(t+)xT(t+)

}
= E
T

{
E
N

{
x(t+)xT(t+)|T

}}
(1)
= E
T

{
F

(0, t]

(
x0x

T
0 , T

)}
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Properties of covariance evolution

properties of F(a, b], the covariance evolution for det. timing:
• splitting (≈ semigroup operator):

P (b+) = F
(0, b]

(x0x
T
0 , T ) = F

(a, b]

(
F

(0, a]

(
x0x

T
0 , T(0, a]

)
︸ ︷︷ ︸

P (a+)

, T(a, b]

)
(2)

• “matrix-affine” in start covariance P

F
(a, b]

(P, T ) = MT
1 P M1 +M2 with M1,2 dep. on T , a, b,H,Np.

· · · ⇒ E
N

{
F (P, T )

}
= F

(
E
N
{P} , T

)
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